40,750 research outputs found

    A type of bounded traveling wave solutions for the Fornberg-Whitham equation

    Get PDF
    In this paper, by using bifurcation method, we successfully find the Fornberg-Whitham equation has a type of traveling wave solutions called kink-like wave solutions and antikinklike wave solutions. They are defined on some semifinal bounded domains and possess properties of kink waves and anti-kink waves. Their implicit expressions are obtained. For some concrete data, the graphs of the implicit functions are displayed, and the numerical simulation is made. The results show that our theoretical analysis agrees with the numerical simulation.Comment: 14 pages, 10 figure

    Solitons, peakons, and periodic cuspons of a generalized Degasperis-Procesi equation

    Get PDF
    We employ the bifurcation theory of planar dynamical systems to investigate the exact travelling wave solutions of a generalized Degasperis-Procesi equation. The implicit expression of smooth soliton solutions is given. The explicit expressions of peaked soliton solutions and periodic cuspon solutions are also obtained. Further, we show the relationship among the smooth soliton solutions, the peaked soliton solutions, and the periodic cuspon solutions. The physical relevance of the found solutions and the reasonwhy these solutions can exist in this equation are also given.Comment: 14 pages, 41 figure

    Early Turn-taking Prediction with Spiking Neural Networks for Human Robot Collaboration

    Full text link
    Turn-taking is essential to the structure of human teamwork. Humans are typically aware of team members' intention to keep or relinquish their turn before a turn switch, where the responsibility of working on a shared task is shifted. Future co-robots are also expected to provide such competence. To that end, this paper proposes the Cognitive Turn-taking Model (CTTM), which leverages cognitive models (i.e., Spiking Neural Network) to achieve early turn-taking prediction. The CTTM framework can process multimodal human communication cues (both implicit and explicit) and predict human turn-taking intentions in an early stage. The proposed framework is tested on a simulated surgical procedure, where a robotic scrub nurse predicts the surgeon's turn-taking intention. It was found that the proposed CTTM framework outperforms the state-of-the-art turn-taking prediction algorithms by a large margin. It also outperforms humans when presented with partial observations of communication cues (i.e., less than 40% of full actions). This early prediction capability enables robots to initiate turn-taking actions at an early stage, which facilitates collaboration and increases overall efficiency.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore